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Abstract

Both diversity and zero-shot capabilities are highly valued in audio captioning. Au-

dio content has inherent ambiguity, and people use different words to describe it from

various perspectives. Also, the scarcity of high-quality data is common in audio cap-

tioning, yet traditional systems are data-hungry. Despite the importance of both ca-

pabilities, their combination is underexplored. Also, although diffusion models have

been shown to produce diverse audio captions, no prior work has applied them to zero-

shot audio captioning. In this work, we propose to address both diversity and zero-shot

issues with diffusion models. We identify two main challenges in this setting: degra-

dation caused by condition noise and overfitting due to the modality gap. These issues

interact with each other and pose a dilemma. To address these issues, we propose a

condition tiling strategy and an audio-free adaptation method. The former mitigates the

dilemma, while the latter enables the application of retrieval-guided Langevin dynam-

ics under zero-shot settings. Extensive experiments with ablations on two established

benchmark datasets (Clotho and AudioCaps) confirm the effectiveness of our method.
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1. Introduction

The auditory signal plays a fundamental role in human perception of the physical

world. Through sound, people understand the scenes and events around them and ex-

perience various emotions. Thus, the ability to comprehensively perceive and interpret

auditory signals is a critical requirement for human-like machine systems. Research in

audio captioning is a key enabler of these capabilities [1, 2]. Audio captioning converts

audio into text by describing the underlying acoustic environment in natural language.

It offers greater freedom and expressiveness than typical audio understanding tasks

such as acoustic scene classification [3, 4], audio tagging [5], and sound event detec-

tion [6, 7]. Those tasks only describe audio with labels from a pre-defined label set.

In addition, they focus only on a specific facet, such as event categories or sounding

objects. However, audio captioning allows free-form, unrestricted description of audio

from various perspectives, such as sounding objects, inferred events, imagined scenes,

human impressions or feelings, as well as their detailed properties and relationships.

This task has many real-world applications, including assisting people with hearing im-

pairments, facilitating the indexing and retrieval of multimedia content, and enhancing

the ability of intelligent devices in vehicles and wearable systems to better understand

their environments.

Audio captioning has attracted considerable attention from researchers over the

years. It is part of the DCASE (Detection and Classification of Acoustic Scene and

Events) Challenge [8], an international competition in audio understanding. Most of

the work concentrates on the accuracy of generation, including the evaluation in the

DCASE Challenge. Audio captioning models are usually constructed by an audio en-

coder that converts input audio clips to features, and a caption generator that takes the

audio features as conditions and outputs the predicted captions. Typical improvements

include augmenting training data with large language models (LLM) [9, 10, 11], us-

ing pretrained audio encoders and caption generators [9, 12], using additional labels as

input or supervision [13, 14], and incorporating training techniques such as reinforce-

ment learning [8] or self-supervision [15, 16].

Recently, an increasing number of studies have highlighted that diversity is an es-
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sential consideration for audio captioning [17, 18, 19, 20, 21, 22]. In this context,

diversity refers to the ability of a model to generate multiple, semantically valid de-

scriptions for the same audio clip, instead of producing a fixed caption. Such diversity

arises naturally because many sounds are ambiguous or share similar acoustic patterns.

For example, insects buzzing and electrical humming could produce similar sounds.

Also, different listeners may focus on different aspects of the same clip (such as sound

characteristics, individual objects, or the overall scene), and use different words to

describe them. By producing diverse captions, systems can provide a more compre-

hensive and unbiased representation of the acoustic environment, reduce the risk of

misunderstandings, and make conversational agents more human-like and engaging.

However, diversity is not the only significant factor in audio captioning. Recent

studies have also increasingly focused on zero-shot audio captioning [23, 24, 25, 26,

27, 28]. In general, zero-shot learning in deep learning models refers to the ability to

perform inference on a task that the model has not been explicitly trained on [29]. It

may use paired data for training, but for a different task [30, 31]. For zero-shot audio

captioning, no paired audio-text data that are human-annotated for the audio captioning

task (such as Clotho [32] or AudioCaps [33]) are used during training, but the final

goal remains the same as standard audio captioning, which is to generate human-like

audio captions directly from audio inputs. These models commonly leverage audio-

text alignment models pretrained on large scale weak audio-text pairs (such as CLAP

[34, 35, 36]), and large language models (such as GPT-2 [37]) to bridge the gap, and

may employ text-only training strategies [25, 26, 27]. This design reduces dependence

on expensive human annotations while still allowing the system to accept audio as input

and produce captions at test time.

The zero-shot audio captioning task is motivated by the fact that collecting large,

high-quality audio-caption pairs is difficult. Audio clips are temporal and often am-

biguous, which makes annotation labor-intensive [27]. As a result, widely used datasets

such as Clotho [32] and AudioCaps [33] contain only 19k and 49k training pairs, re-

spectively. In contrast, visual captioning datasets like MSCOCO [38] provide over

414k image-text pairs. While several large-scale audio-language datasets do exist, such

as WavCaps [11], Laion-audio-630K [34], Auto-ACD [39], and AudioSetCaps [40],
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these are generated automatically using heuristics or large language models. Com-

pared to human-annotated datasets, they tend to be noisier and less natural, showing

significant differences from human-generated captions and making them unsuitable for

direct use in end-user-facing captioning applications. Although data augmentation and

weakly-labeled sources can increase scale, they often introduce additional biases or

artifacts [27]. Previous studies have experimentally demonstrated that directly training

on weakly-labeled sources, although larger, can lead to inferior performance on audio

captioning benchmarks [27, 41]. Zero-shot audio captioning methods, especially with

text-only training, target at this problem and offer a promising direction. In these meth-

ods, only a pretrained CLAP model and some target-domain captions are needed. This

allows simple and efficient domain adaptation for domains with limited annotation re-

sources, such as performing audio captioning that aligns with human requirement and

style (like in AudioCaps and Clotho). In real-world scenarios, many areas of audio

understanding, such as acoustic scene analysis [42], lack sufficient paired annotation

data. Zero-shot audio captioning therefore offers a practical solution by reducing the

need for costly paired data collection and enabling faster system development. More-

over, since the process involves only a pretrained CLAP model and text-only data, it

can also be applied in privacy-sensitive contexts where sharing raw audio is restricted.

Zero-shot audio captioning methods can generally be categorized based on how au-

dio information is introduced into the system [27]. In decoder-guided methods, word

probability vectors outputted by caption generators (e.g., unconditional language mod-

els) are modified using pretrained audio-text alignment models to incorporate audio

semantics [23, 24], yet their performance is usually weaker than encoder-guided ones

[27]. In encoder-guided methods, audio information is processed by an encoder and

fed into the caption generator as a condition. This is often achieved through text-

only training and “condition swapping”, leveraging the fact that audio and text features

from audio-text alignment models reside in the same embedding space [25, 26, 27, 28].

However, simple condition swapping may lead to a “modality gap” problem [43],

which many works address by injecting noise into the conditions during training to

reduce overfitting [25, 26, 27, 44]. Our method can be categorized as a hybrid of

encoder-guided and decoder-guided methods. This integrated approach ensures better
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utilization of the conditions and promotes generation relevance, which is an important

issue for diffusion-based methods in the zero-shot setting, as we will introduce below.

Despite the importance of both diversity and zero-shot capabilities in audio caption-

ing, to the best of our knowledge, no prior work has combined these two requirements.

In practice, however, it may be important and necessary to combine zero-shot and di-

verse capabilities. For example, audio clips may need to be described by captions with

diverse personal styles and grammatical structures, however, the models may not have

encountered such data during training, resulting in the need for combined zero-shot

and diverse captioning. As another example, in zero-shot settings the model must in-

terpret audio it has never seen, creating a domain gap and increasing uncertainty. A

deterministic model generates only one caption output, making misinterpretation more

likely—for instance, an unfamiliar mechanical sound may resemble a drill, mixer, or

saw. Diversity mitigates this risk by offering multiple plausible outputs, increasing

the chance that the correct interpretation is included despite the ambiguity of zero-shot

inference. Moreover, diffusion models [45, 46] have demonstrated effectiveness in gen-

erating high-quality, diverse outputs across multiple domains [47, 48, 49]. Although

some studies have explored diffusion models for diverse audio captioning [20, 21], they

have not investigated their use in a zero-shot setting. In this work, we introduce a novel

approach for zero-shot diverse audio captioning with diffusion models.

We identify unique challenges in applying zero-shot techniques to diffusion-based

captioning. First, we find that simple condition swapping without noise injection yields

unsatisfactory results, aligned with the modality gap observed in prior work. However,

applying noise injection to diffusion-based models introduces a new problem, which

we term “noise-induced condition degradation”. It has connections with the gap

between training and inference [50] and degeneration from insufficient corruption [51]

in text diffusion models. To address this, we propose a condition tiling strategy to

ensure that conditions are not easily overlooked. Additionally, we adapt the retrieval-

guided Langevin dynamics [20] to the zero-shot setting. Specifically, we introduce

an audio-free adaptation scheme to modify text encoders in audio-text alignment

models, allowing these models to be used in retrieval-guided Langevin dynamics. This

further alleviates the condition degeneration problem without requiring paired audio-
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text data. The condition swapping and the Langevin dynamics components form the

encoder-guided and decoder-guided parts of our method, respectively. In summary, our

main contributions are:

• We propose a diffusion-based framework that integrates both diversity and

zero-shot capabilities for audio captioning.

• We identify and analyze through experiments the problem of noise-induced con-

dition degradation, a challenge inherent in text diffusion models using condi-

tion swapping with noise injection for zero-shot learning. To address this, we

introduce a condition tiling strategy that enhances conditioning robustness.

• We propose an audio-free adaptation method to modify text encoders in audio-

text alignment models under zero-shot settings. This enables the use of retrieval-

guided Langevin dynamics, improving caption relevance while mitigating con-

dition degradation.

• Extensive experiments with ablation studies on two major benchmark datasets,

Clotho [32] and AudioCaps [33] demonstrate the effectiveness of our approach.

2. Related Work

2.1. Audio captioning

Audio captioning models typically follow an encoder-decoder structure [2]. The

audio encoder receives audio waveforms and outputs audio features, while the text

decoder receives conditioning information, including the audio features, and outputs

predicted captions. Common structures for encoders include convolutional neural net-

work (CNN) [10, 12, 16], such as PANNs [52] or ConvNext [53], and Transformer

[9, 12, 54, 55], such as BEATs [56] or EAT [57]. They are usually pretrained on audio

classification datasets like AudioSet [58] to alleviate the data scarcity problem. Sim-

ilarly, the decoders often adopt recurrent neural network (RNN) [16] or Transformer

[9, 10, 12, 15, 59], with many incorporating pretrained language models [9, 10, 12].

Also, data augmentation is usually employed, such as audio augmentation [12], word
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substitution [60], and ChatGPT-facilitated generation of audio-text pairs [9, 10, 11].

However, this could bring additional noise into the dataset [27]. The models are usually

supervised with a maximum likelihood loss on ground-truth captions given the audios

as inputs. Some works also use additional input such as predicted keywords [13], as

well as additional supervision such as reinforcement learning (RL) [8] or contrastive

loss [15, 16]. However, these methods do not take the diversity of generation into con-

sideration, and some supervision methods, such as reinforcement learning, may even

reduce diversity [19].

2.1.1. Diverse audio captioning

As an inherent characteristic of human-generated captions, diversity has received

much attention in recent studies on audio captioning. Conditional generative adversar-

ial network (C-GAN) based method [17, 19] adds semantic and naturalness discrimi-

nators to the conventional CIDEr-based [61] RL optimization target. Neural condition

coding (NCC) based method [18] adds a “specificity” variable to the input of the cap-

tion generator, and uses a discriminator to score the “specificity” of generated captions

with adversarial training. Audio captioning with variational autoencoder (AC-VAE)

[22] proposes a variational autoencoder structure with autoregressive and global con-

straints. Zhu et al. [20] is the first to explore diffusion models for audio captioning,

proposing a diffusion-based audio captioning (DAC) framework with retrieval-guided

Langevin dynamics, effectively balancing diversity and accuracy. Xu et al. [21] also

adopts a continuous diffusion framework. However, they do not explore the zero-shot

setting with diffusion models. Our work is the first to explore diffusion models for

audio captioning in a zero-shot setting. To achieve this, we build our base model di-

rectly upon the DAC model of Zhu et al. [20], inheriting its Transformer-based [62]

denoiser structure and BART-based [63] diffusion mechanism. The main modification

is adapting it to a zero-shot scenario: we replace the original BEATs audio encoder

[56] with the CLAP model pretrained on WavCaps [11] as the condition encoder, and

incorporate condition swapping with noise injection, in line with other zero-shot audio

captioning works. Starting from this DAC-based baseline allows us to clearly identify

the challenges in transferring diffusion-based captioning to the zero-shot setting. Based
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on the insights gained, we further modify the model to address noise-induced condition

degradation, yielding our final method. This connection emphasizes both the adoption

of the diffusion-based framework from DAC of Zhu et al. [20] to ensure high perfor-

mance on diversity, as well as the novel discoveries and adaptations for the zero-shot

setting.

2.1.2. Zero-shot audio captioning

Zero-shot audio captioning does not use paired audio-text data for training, which

alleviates the data scarcity problem for audio captioning. To achieve this, Salewski et

al. [24] and Shaharabany et al. [23] utilize decoder-guided methods. In Salewski et al.

[24], the word probabilities outputted by the text decoder are weighted with the rele-

vance scores from audio-language models. In Shaharabany et al. [23], the hidden states

inside the text decoder are optimized with guidance from an audio-language model.

The updated hidden states are then used to calculate new word probabilities. However,

their performances are usually weaker than encoder-based ones [27]. Also, the output

of the text decoder might face compatibility issues with that of the alignment model

(e.g. tokenization, vocabulary), making it difficult to leverage off-the-shelf audio-text

alignment models. In encoder-based methods, the text decoder receives audio features

from encoders as conditions. To enable this capability without using audio for training,

condition swapping is commonly employed [25, 26, 27, 28]. Also, similar captions or

similar text embeddings in the training set could be used for conditioning [27, 28], yet

this could introduce additional noise into the conditions [2]. Some works also point

out that simple applications of condition swapping may lead to a “modality gap” prob-

lem [25, 26, 27, 43]. As a remedy, many works add noise to the conditions at training

time (termed “condition noise injection”), trying to smear out the statistical difference

between features from different modalities and reduce overfitting [25, 26, 27, 44]. Dur-

ing inference, conditions are generally passed without any added noise, preserving the

integrity of the audio semantics.
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2.2. Diffusion models

Diffusion models find widespread use across various generation tasks, including

many audio-related tasks [47, 64]. They include a forward diffusion process which

adds Gaussian noise progressively to a clean data representation, as well as a reverse

diffusion process which denoises a noisy data representation gradually. Denoising Dif-

fusion Probabilistic Models (DDPM) [45] and their improvement, Denoising Diffusion

Implicit Models (DDIM) [46], are popular frameworks for diffusion models. Recent

studies explore the use of diffusion models in text generation, including captioning

tasks such as image captioning [65] and audio captioning [20, 21]. Instead of gen-

erating tokens sequentially, diffusion-based text models take a non-autoregressive ap-

proach, producing every token simultaneously and refining them progressively over

time. Many of them offer significant diversity. Some utilize discrete diffusion for text

data and perform corruption on a token level [66, 67], which is coarse-grained [51].

The others convert the discrete text tokens into continuous latent embeddings, and per-

form continuous diffusion on these latents [20, 21, 68, 69, 70, 71, 72]. This also allows

features of diffusion models such as classifier guidance. However, captioning with both

diverse and zero-shot capabilities using diffusion models remains underexplored.

3. Preliminaries

In this section, we introduce the basic concepts used throughout the paper. We first

define our task setting as follows. We denote an audio clip as a, and its corresponding

ground truth caption is c = [w0,w1, . . . ,wLc−1]. Here, wi indicates the i-th word and

Lc is the caption length. At inference time, the model takes in an audio clip a from

the test split and outputs a predicted caption ĉ, and the prediction varies between runs.

However, at training time, only text captions from the training split are available to the

model.

3.1. Diffusion models

Forward Diffusion. Diffusion models consist of a forward process and a reverse

process. In the forward process of continuous diffusion, ground-truth captions c are
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first converted to continuous text latents via a text encoder to obtain the clean diffu-

sion states x0 ∈ RB×L×C . 1 Here, B is the batch dimension, C is the feature dimen-

sion and L is the padded token length. These latents should be convertible back into

discrete text using a corresponding decoder, which can be achieved with pretrained

encoder-decoder language models such as Bidirectional and Auto-Regressive Trans-

formers (BART) [63]. These clean latents can be corrupted into noisy latents xt through

the forward process at training time, which has an equivalent formulation [45] as:

xt =
√
ᾱt x0 +

√
1 − ᾱtϵt , (1)

where t ∈ {0, 1, . . . ,T } is the diffusion timestep, T is the maximum timestep, ϵt ∈

RB×L×C is sampled from N(0, I) to corrupt x0, and xt ∈ RB×L×C is the noisy latent at

timestep t. ᾱt =
∏t

i=1 αi. αt ∈ (0, 1) is the noise schedule, which decreases with respect

to t. This schedule is usually predefined, such as linear [45] or sqrt [73] schedules.

Reverse Diffusion. The reverse process first samples xT from N(0, I), then grad-

ually removes noise from it. It leverages a denoiser model fθ, which takes in noisy

latents xt and predicts its clean version:

x̂(t)
0 = fθ(xt, t, Fcond, x(t)

sc ) , (2)

where xt is the noisy text latent, t is the corresponding timestep, Fcond is the condi-

tioning information such as audio features, and x̂(t)
0 ∈ R

B×L×C is the prediction of x0 at

timestep t. x(t)
sc ∈ RB×L×C is the self-conditioning information, which is used in many

text diffusion models to counteract the information loss when calculating xt from x̂(t+1)
0

at inference time with Eq. 4 [74, 75]. It is formulated as:

x(t)
sc =


Detach( fθ(xt, t, Fcond,⊘)) training time

x̂(t+1)
0 inference time when t , T

⊘ inference time when t = T

, (3)

1Here, x0 denotes the original clean data in the forward process. Following common practice in the

diffusion model literature [45, 46], the same symbol is also used for the denoised prediction in the reverse

process.
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where Detach(·) means stopping gradient in back propagation, and ⊘ means no input.

As to the specific structure of the denoiser, structures based on Transformer with cross-

attention layers and no causal masks are commonly used, and the condition is usually

injected via cross-attention [20, 21]. The timestep information t is usually injected via

additional scale and shift layers before skip connections [20, 73]. After obtaining x̂(t)
0

from xt with fθ, the denoised diffusion state xt−1 can be calculated with (following the

DDIM [46] scheme):

xt−1 =
√
ᾱt−1 x̂(t)

0 +

√
1 − ᾱt−1 − σ

2
t ·

xt −
√
ᾱt x̂

(t)
0

√
1 − ᾱt

+ σtϵt , (4)

where ϵt ∈ RB×L×C is sampled from N(0, I) and σt controls the stochasticity of the

process. Through iterative application of this process, xT , xT−1, · · · , x0 can be obtained

successively, and the final predicted x0 is converted into discrete captions via a text

decoder. Consecutive 1-gram repetition is then removed following [20].

Training. For training fθ, a timestep t is first sampled uniformly from {1, 2, . . . T }.

Noisy latents xt are obtained from clean latents according to the forward process in

Eq. 1. The model fθ predicts x̂(t)
0 from this xt, and the output x̂(t)

0 is supervised using

a mean-squared loss with the actual clean latent. Note that this xt is not obtained

in the same way during the actual inference. At inference time, this xt is obtained

from the iterative application of Eq. 4. However, during training, it is obtained with a

single application of Eq. 1. This is known as the gap between training and inference in

diffusion models [50], which paves the way for the problem we describe in Sec. 4.

3.2. Condition swapping for zero-shot learning

In condition swapping [25, 27], a text encoder is used to provide the condition to

the caption generator at training time, and the text encoder is swapped to an audio

encoder at inference time. Both the text encoder and the audio encoder come from a

same pretrained audio-text alignment model. Specifically, the condition input to the

caption generator Fcond ∈ RB×1×C is formulated as:

Fcond =


Enct

ali(c) + σcondϵ training time

Enca
ali(a) inference time

, (5)
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where Enct
ali is the text encoder part of a contrastively pretrained alignment model, and

Enca
ali is the audio encoder part. Here, the CLAP model as in Zhang et al.[27] and

Kouzelis et al. [25] is commonly adopted, which is trained only on WavCaps [11] and

does not contain any human-annotated data. σcondϵ is the noise injection mechanism.

Here, ϵ ∼ N(0, I), and σcond denotes the strength of condition noise, which is an im-

portant hyperparameter to be tuned. Since the alignment model encodes audio and text

data into a shared semantic space, switching from the text encoder to the audio en-

coder should continue to yield intelligible features suitable for the denoiser. However,

the distribution of caption features and audio features may not match exactly in reality

(known as the “modality gap” [26, 43]), and the caption generator might overfit to the

differences. Adding condition noise at training time could aid in smoothing out these

statistical differences and mitigate this issue. Also, the condition noise is not injected

at inference time, leaving the audio semantics intact.

3.3. Langevin dynamics

Langevin dynamics sampling is categorized as a Markov Chain Monte Carlo (MCMC)

sampling method. It constructs a Markov chain to generate a sequence of dependent

random variables that, after many steps, converges to the target distribution. Suppose

that the desired probability distribution is π, the Langevin sampling process runs as

follows. First, we have an initial sample x′0, which can be sampled from any prob-

ability distribution π0(x). Then, we follow the equation below to produce samples

x′i (i = 1, 2 . . . ) iteratively [20]:

x′i+1 = x′i + γ∇x log π(x)|x=x′i +
√

2γσi , (6)

where γ > 0 is a hyperparameter that controls the magnitude of the gradient, and σi

is the noise term at step i sampled from a Gaussian distribution N(0, I). It can be

proved that the distribution of x′i finally converges to π as i increases. In this work,

we use retrieval-guided Langevin dynamics, which can be derived from Eq. 6 and this

involves substituting π with a conditional probability and plugging in an alignment

model [20]. The iteration process for retrieval-guided Langevin dynamics is shown in

detail in Sec. 5.2.
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3.4. Metrics

For evaluation of both accuracy-related and diversity-related capabilities, the fol-

lowing metrics are often used [17, 19, 20, 22]. We also adopt these in our experiments.

BLEU4 [76], ROUGEL [77], METEOR [78], CIDEr [61], and SPIDEr [79] are em-

ployed for accuracy evaluation. They measure the quality of the generated captions

based on their similarity with the ground-truth captions. For diversity measurement,

we generate five captions for each audio clip, and compute vocabulary size, mBLEU4,

div-1, and div-2 metrics. This is consistent with previous works [17, 19, 20, 22].

“mBLEU4” computes the mutual similarity between the generated captions that belong

to the same audio clip. Div-n computes the number of unique n-grams in the generated

captions relative to the total generation length. With the exception of mBLEU4, higher

values indicate better performance for all metrics.

In this paper, the following abbreviations are used in the tables to save column

space: “B4” denotes BLEU4, ‘RL” denotes ROUGEL, “MET” denotes METEOR, “Cr”

denotes CIDEr, “Sr” denotes SPIDEr, “Voc” denotes vocabulary size, and “mB4” de-

notes mBLEU4.

4. Findings

In this section, we analyze the problem of noise-induced condition degradation

with empirical investigations. To illustrate the problem, we first use the main denoiser

model in Zhu et al. [20] and replace its conditioning part with the condition swapping

mechanism as described in Sec. 3.2. This serves as a simple diffusion-based prototype

for zero-shot diverse audio captioning. For the alignment model in condition swapping,

CLAP pretrained on WavCaps [11] is utilized. The denoiser is based on Transformer

[62] and the condition is introduced via cross-attention. The hyperparameters mainly

follow [20], and can be found in Sec. 6.2. The dataset is Clotho [32], and the detailed

explanations of the evaluation metrics are listed in Sec. 3.4.

The results are listed in Table 1. The first five metrics correspond to relevance

and the latter four correspond to diversity. We perform experiments on three condition

noise levels σcond, which are 0, 0.15 and 0.5. For reference, we also include the results
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Table 1: Results of zero-shot diverse audio captioning with direct application of condition swapping to the

main denoiser model in Zhu et al. [20] on the Clotho dataset. The condition is text at training time and audio

at inference time. The abbreviations of the metrics are in 3.4. “No Cond” means that the denoiser model

uses no condition at all.

Cond B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

σcond = 0 0.052 0.255 0.109 0.139 0.101 2513 0.116 0.611 0.798

σcond = 0.15 0.076 0.285 0.126 0.156 0.115 2383 0.037 0.695 0.860

σcond = 0.5 0.046 0.267 0.100 0.050 0.050 2244 0.021 0.724 0.875

No Cond 0.043 0.259 0.097 0.051 0.046 2205 0.019 0.728 0.876

of not using any conditions for training and inference. This could serve as a baseline

for not leveraging any condition information when generating the captions.

As shown in Table 1, the accuracy of the model when σcond = 0 is only slightly

higher than that of completely random generation (“No Cond”) on many metrics. This

indicates severity of the modality gap problem. When no condition noise is injected,

the model tends to overfit to the distributional differences between the audio features

and text features, which is in line with prior work on zero-shot audio captioning [26,

27]. When condition noise is injected with σcond = 0.15, the accuracy improves, yet

is still much inferior to the fully-supervised scenario using audio features from the

same alignment model (see the σcond = 0 row of Table 2). However, using condition

swapping with noise injected around this level typically yields desirable accuracy in

autoregressive language models on Clotho and AudioCaps [25, 26, 27]. When the

standard deviation of condition noise increases further to 0.5, the model accuracy drops

again to approximately the level of random generation. To further investigate the cause

of this phenomenon, we perform additional experiments using audio conditions at both

training and inference time, which is:

Fcond =


Enca

ali(a) + σcondϵ training time

Enca
ali(a) inference time

. (7)

This eliminates the influences of the modality gap and isolates the effects of condi-

tion noise injection for close scrutiny. The results are listed in Table 2. Experiments

using ground-truth captions as conditions at both training and inference time are also
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performed and listed in Table 3, which is for demonstrative purposes only since ground-

truth captions are used at inference time.

Table 2: Results of fully-supervised diverse audio captioning using audio as condition at both training and

inference time on the Clotho dataset. The denoiser comes from [20] and the audio features come from CLAP

pretrained on WavCaps [11]. The abbreviations are the same with Table 1.

Cond B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

σcond = 0 0.138 0.364 0.167 0.333 0.224 2035 0.069 0.640 0.829

σcond = 0.15 0.116 0.336 0.148 0.252 0.174 1950 0.065 0.630 0.824

σcond = 0.5 0.049 0.269 0.103 0.065 0.056 1918 0.026 0.701 0.867

No Cond 0.043 0.259 0.097 0.051 0.046 2205 0.019 0.728 0.876

Table 3: Results of exploratory experiments using captions as condition at both training and inference time

on the Clotho dataset. The denoiser comes from [20] and the text features come from CLAP pretrained on

WavCaps [11]. The abbreviations are the same with Table 1.

Cond B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

σcond = 0 0.202 0.427 0.211 0.543 0.349 1908 0.312 0.454 0.651

σcond = 0.15 0.129 0.354 0.167 0.323 0.219 2124 0.079 0.612 0.813

σcond = 0.5 0.055 0.276 0.108 0.066 0.060 2137 0.023 0.720 0.873

No Cond 0.043 0.259 0.097 0.051 0.046 2205 0.019 0.728 0.876

As shown in the σcond = 0 row of Table 2, the model can perform well when trained

with audio features, indicating that the model itself is able to effectively leverage condi-

tioning information. This also confirms the severity of the modality gap problem when

compared with the σcond = 0 row in Table 1. However, the performance drops dras-

tically when the noise level increases. The accuracy at σcond = 0.5 (variance is 0.25)

approaches that of random generation, suggesting that the conditioning information

becomes almost unusable at this noise level. However, previous non-diffusion mod-

els were still able to effectively utilize the condition at this noise level on both Clotho

and AudioCaps, even in the presence of the modality gap [26, 27]. This problem be-

comes more evident when encoded ground truth captions are used as conditions at both

training and inference time, which is shown in Table 3. The accuracy is much higher

at σcond = 0. However, the relevance still drops drastically and approaches random

15



generation at σcond = 0.5, despite the presence of ground-truth information in the con-

ditions. Experiments on AudioCaps, shown in Table 4, lead to similar observations.

We refer to this sharp reduction in condition utilization with respect to the variance

of condition noise as noise-induced condition degradation, a phenomenon that ap-

pears to be more prominent in diffusion-based captioning models compared with their

autoregressive counterparts.

Table 4: Results of exploratory experiments using captions as condition at both training and inference time

on the AudioCaps dataset. The denoiser comes from [20] and the text features come from CLAP pretrained

on WavCaps [11]. The abbreviations are the same with Table 1.

Cond B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

σcond = 0 0.346 0.539 0.281 0.903 0.551 1188 0.374 0.441 0.594

σcond = 0.15 0.241 0.455 0.230 0.623 0.396 1238 0.174 0.546 0.712

σcond = 0.5 0.101 0.331 0.142 0.123 0.100 1165 0.036 0.718 0.829

No Cond 0.088 0.295 0.117 0.058 0.053 1219 0.042 0.722 0.829
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Figure 1: Illustration of noise-induced condition degradation in diffusion models. “GT” means ground-

truth. a) & b): Unlike autoregressive captioners, the supervision target of diffusion-based captioners can be

extracted from model input at training time. c) & d): Ease of prediction from noisy latents compared with

noisy conditions may cause underexploitation of conditions in diffusion-based captioners.

We proceed to analyze the underlying causes of this phenomenon, which is demon-

strated in Fig. 1. Unlike autoregressive models, during training, diffusion models could

utilize the input text latent xt, which is obtained from Eq. 1 and contains ground-

truth information. On the other hand, autoregressive models could only know previous

words, which do not contain ground-truth information about the current word to be pre-
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Figure 2: Summary of the findings. Each sub-figure shows the potential effects when changing from the

setting on the left to the setting on the right. a) When training and testing with audio conditions, training with

noise injected into the audio conditions deteriorates performance in diffusion models due to noise-induced

condition degradation. b) Training and testing with encoded text captions as conditions leads to similar

observations. c) When training with text conditions and testing with audio conditions, adding condition noise

during training could alleviate overfitting (caused by the modality gap), yet introduce condition degradation,

limiting the effectiveness of simple condition swapping in diffusion models.

dicted. Moreover, as indicated in Gao et al. [51], if the noise term
√

1 − ᾱtϵt in forward

diffusion (Eq. 1) is relatively small, which commonly occurs at smaller timesteps t, ex-

tracting the ground truth from xt can be straightforward without relying on conditions

or contexts. Thus, when conditioning noise is present, the model could learn to focus

less on the condition due to the relative easiness in recovering the ground truth from

the input text latent xt and difficulty in using the condition. However, at inference time,

the input text latent xt is initialized from pure noise and no longer contains ground truth

(known as the gap between training and inference in diffusion models [50] explained

in Sec. 3.1). Thus, the model may perform undesirably. To sum up, adding noise to

the condition alleviates overfitting from the modality gap problem, yet could intensify

noise-induced condition degradation, causing a dilemma and limiting the performance

of simple condition swapping in diffusion models. A summary of these experiments is

illustrated in Fig. 2.

5. Our Method

After analyzing the challenges of incorporating zero-shot techniques into diffusion-

based captioning models, we propose ZS-DDAC (Zero-Shot Diffusion-based Diverse
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Figure 3: Overview of our method at training time including the tiled conditioning mechanism. “GT” means

ground truth. xsc is the self-conditioning input. At training time, during each batch, a tentative run is

performed with no self-conditioning input and no gradient calculation, and the resulting denoised text latent

is used as the self-conditioning input during the formal run (as in Sec. 3.1).
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Figure 4: Overview of our method at inference time including retrieval-guided Langevin dynamics. The

tiled conditioning mechanism is the same with that at the training stage. “sim” means calculating the cosine

similarity between the text embedding and audio embedding. The red line means propagating the gradient

from the cosine similarity to the noisy text latents. xsc is the self-conditioning input, receiving the denoised

text latents from the previous iteration during inference (as in Sec. 3.1).
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Audio Captioning), which tackles the aforementioned problems accordingly. The over-

all framework is illustrated in Fig. 3 and Fig. 4. The mechanism of audio-free adapta-

tion of alignment models is shown in Fig. 5.

We first provide an overview of the entire pipeline at both training and inference

time. As shown in Fig. 3, at training time, the ground-truth (GT) captions are en-

coded by the BART [63] encoder to produce text latents that are used as clean diffusion

states. The BART latents go through forward diffusion (Eq. 1) to produce noisy diffu-

sion states. The GT captions are also used by the CLAP [11] text encoder to produce

condition embeddings. These CLAP embeddings are added noise according to the

condition noise injection mechanism to reduce the modality gap. The noisy CLAP

embeddings and noisy diffusion states are combined using tiled conditioning and fed

to the denoising Transformer. The self-conditioning information (Eq. 3) is fed to the

cross-attention input of the Transformer. The Transformer predicts an estimation of the

clean diffusion states. The prediction is supervised against the real BART latents using

a mean-squared error.

At inference time in Fig. 4, the diffusion state is first initialized with a random

Gaussian noise. The user-inputted audio clip is encoded by the CLAP audio encoder

with no condition noise added. This CLAP embedding is combined with the newest-

generated diffusion state via tiled conditioning and fed to the denoising Transformer.

The predicted clean diffusion state is added noise according to the reverse process of

the diffusion model (Eq. 4). The resultant diffusion state is further refined with the

retrieval-guided Langevin dynamics module. The process iterates and the diffusion

state at timestep 0 is decoded by the BART decoder.

5.1. Tiled conditioning for condition swapping

One straightforward way to alleviate the condition degradation problem is to care-

fully adjust the proportion of noise inside the conditions and noisy text latents, such

as experimenting with different noise schedules αt [51, 73, 80] or different condition

noise [26, 27]. However, the effects are intertwined with the modality gap problem and

the mechanism of text semantics corruption in the forward diffusion, and arduous work

of parameter tuning tailored to each model and dataset is needed. For this, we propose
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to use tiled conditioning, which can be used together with condition noise injection. It

could alleviate the problem of condition degradation caused by condition noise injec-

tion, and still allow the condition noise injection to reduce overfitting to the modality

gap. Concretely, the condition Fcond ∈ RB×1×C and the noisy text latent xt ∈ RB×L×C

are passed to the Transformer-based denoiser model TFModelt as:

x̂(t)
0 = TFModelt(TileL(Fcond) + xt + PE, crs_input=x(t)

sc ) , (8)

where TileL(Fcond) stacks multiple Fcond along the length dimension, expanding it from

RB×1×C to RB×L×C . PE is the positional embedding, and “crs_input” is the cross atten-

tion input, which receives the self-conditioning information as introduced in Sec. 3.1.

The timestep information t is included via scaling and shifting as in Sec. 3.1. In this

way, the condition is mixed with the noisy text latent as the input to the denoiser. Thus,

the condition becomes hard to ignore since the model needs to process the condition

and the noisy latent at the same time. This alleviates the effects of condition noise

injection on condition degradation while allowing it to tackle the modality gap. In ad-

dition, there are no extra parameters, alleviating the burden of manual tuning. Since

the condition noise is added before expansion to match the BART latents, it remains

identical across positions and does not render the input to the Transformer unreadable.

This noise is only applied during training, not in end-user scenarios, and is introduced

in a controlled manner to reduce the modality gap. Prior studies have shown that an

appropriate noise level balances this effect without damaging the condition too much

[26, 27], and we adopt the typical variance used in zero-shot audio captioning.

5.2. Audio-free adaptation for retrieval-guided Langevin dynamics

In an attempt to further boost the utilization of conditions, we propose to integrate

retrieval-guided Langevin dynamics in Zhu et al. [20] into our system. It cannot be

directly leveraged under the zero-shot setting. To understand this, we first introduce

the processing flow of the retrieval-guided Langevin dynamics here.

The retrieval-guided Langevin dynamics works on the intermediate noisy text latent

x′t−1, obtained after applying reverse diffusion Eq. 4, as shown in Fig. 4. It adjusts x′t−1

based on the cosine similarity value from an audio-text alignment model. Suppose
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the alignment model has its audio encoder Enca
ali, and its text encoder Enct,l

ali. For this

guidance method to work properly, the text encoder Enct,l
ali needs to accept the same

latent format as the denoiser output, which are the BART latents in our case. The “l”

in the superscript means that this model is designed specially to handle desired latents

as inputs. Note that this makes such text encoders different from the text encoders in

conventional off-the-shelf audio-text alignment models. In conventional models, they

have a text encoder Enct
ali that accepts raw text strings as input and returns embeddings

for retrieval use. They do not standardize on the format of the internal representations

for the text strings, using different vocabularies, tokenization, and token embeddings.

They are often incompatible with the text latents we would like to use, which are the

BART latents in this case.

Concretely, to perform the guidance, x′t−1 is first assigned as x′t−1,0. The following

update process is executed recursively for i = 0, 1, . . . IM − 1:

xt−1,i+1 = xt−1,i + γ1
(
∇x=x′t−1,i

Enct,l
ali(x)
)T Enca

ali(a) + γ2∇x=x′t−1,i
||x − x′t−1,0||

2 (9)

where ∇ is the gradient operator, γ1 and γ2 are two hyperparameters controlling the

strength of update and information retention. The last guided latent x′t−1,IM
is outputted

as the new xt−1, which is fed back to the denoiser as the beginning of the next round of

denoising and retrieval-guided update.

Given that the similarity of a text latent x and an audio clip a can be expressed as

a cosine similarity of V(x, a) =
(
Enct,l

ali(x)
)T Enca

ali(a), the above equation Eq. 9 can be

seen as performing gradient-based adjusts to the latent x′t−1,i so that the cosine similarity

with the audio embedding can be maximized. That’s because∇x

((
Enct,l

ali(x)
)T Enca

ali(a)
)
=(

∇x
(
Enct,l

ali(x)
))T

Enca
ali(a). As seen in Eq. 9, we need to get the gradient of the text en-

coder output with respect to the latent x′t−1,i. If we first decode a BART latent x into a

text string with DecBART, and put the string to a conventional text encoder Enct
ali, which

means Enct
ali
(
DecBART(x)

)
, we cannot obtain the gradient with respect to x since the de-

coding breaks the gradient flow. Finding a continuous approximation of the decoding

process that remains stable, avoiding issues such as gradient explosion or vanishing, is

difficult. Moreover, the gradient backpropagation becomes highly complex and com-

putationally expensive due to the autoregressive nature of decoding (requiring multiple
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forward passes for a single sequence) and the additional need to propagate through

the BART decoder. The problem is further exacerbated by the mismatch between the

vocabulary and tokenization schemes of BART and the off-the-shelf alignment model.

Consequently, it is essential for the alignment model’s text encoder to directly accept

BART embeddings as input.

From the discussion above, we understand that the output format of the denoiser

(BART latents in this case) and the input format of the audio-text alignment model

need to be compatible. In supervised settings, this is straightforward: we simply train a

new audio-text alignment model that accepts BART latents as text inputs. This model

can be trained with paired BART latents and audio clips [20]. However, such paired

data are unavailable for training under zero-shot settings.
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Encoder
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Audio-free Adaptation:

CLAP Text
Encoder
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Figure 5: The audio-free adaptation of alignment models. “GT” means ground truth. The goal is to train

a “CLAP Text Latent Encoder” that can take in BART latents and return CLAP embeddings, as opposed to

the original CLAP Text Encoder that only allows text strings as inputs. Also, no audio data is used in this

process. Since the original audio and text encoders are aligned, the new text latent encoder also becomes

aligned to the audio encoder after this process, as shown by blue arrows. The snowflake symbol denotes that

the parameters of the corresponding module are frozen.

To address this challenge, we propose an audio-free adaptation method to retrain

the alignment model to accept BART text latents as inputs. The scheme is shown in

Fig. 5. This enables the utilization of off-the-shelf large pretrained audio-text alignment

models in the guidance process while preserving the zero-shot settings. Specifically,

we start with the original text encoder of the alignment model Enct
ali, and replace its

input embedding layer with two random-initialized Transformer layers to obtain Enct,l
ali.

Note that the input is no longer text strings, but BART latents. In Fig. 4 and Fig. 5,
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Enct,l
ali is denoted as CLAP Text Latent Encoder. The added “Latent” word indicates

that the functionality of the model has changed significantly: it should not receive

text strings and output CLAP embeddings, but receive BART latents and output CLAP

embeddings. We devised a way to ensure that the new model can still successfully

output CLAP embeddings that fit the semantics of the input BART latents, and still no

audio data is used in the retraining. Specifically, we train the parameters of Enct,l
ali using

a mean squared loss against the output of the original text encoder, which is:

L = ∥Enct,l
ali

(
Detach

(
EncBART(c)

))
− Detach

(
Enct

ali(c)
)
∥2 , (10)

where EncBART is the BART encoder and Detach(·) stops back propagation. Here, only

captions are used for training, and the original text encoder functions as a middleman

for the actual target. After the text-only training, the adapted text encoder Enct,l
ali be-

comes aligned with the original text encoder Enct
ali. Also, the original text encoder

Enct
ali is already aligned with the audio encoder Enca

ali. Thus, the adapted text encoder

Enct,l
ali is also aligned with the audio encoder Enca

ali.

The adapted text encoder Enct,l
ali is then leveraged for the retrieval-guided Langevin

guidance as described in Eq. 9. The inference iterates from xT , xT−1, · · · until x0, and

the BART decoder is employed to convert the predicted x0 to captions.

6. Experiments

6.1. Datasets

We use two standard benchmark datasets in audio captioning, Clotho [32] and Au-

dioCaps [33], in our evaluation. These datasets are used across a wide range of audio

captioning works, such as zero-shot audio captioning [23, 24, 25, 26, 27, 28] and di-

verse audio captioning [17, 18, 19, 20, 21, 22]. Clotho is also the official benchmark

dataset in the DCASE Challenge.

The Clotho dataset has 3839, 1045, and 1045 audio clips in the training, validation,

and testing set, respectively. Each audio is associated with 5 human-annotated captions.

The AudioCaps dataset has 49274, 494, and 957 audios in the training, validation, and

testing set, respectively. Each training audio has only 1 caption, yet each audio in the
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validation or testing set has 5 captions. In our setting, the audio clips in the training

sets are not used.

6.2. Implementation details

BART-base [63] is employed to convert between discrete captions and text latents.

The denoiser model is based on Transformer encoder [62], with 12 layers and 12 atten-

tion heads. The feature dimension is 768. The self-conditioning input is dropped out

with a probability of 0.5 at training time following [74]. A linear diffusion noise sched-

ule is used. The decoding uses beam search with beam size 5, no_repeat_ngram_size

3, and repetition penalty 1.2. Here, setting no_repeat_ngram_size to 3 means that no

n-gram repetition over 3 is allowed in decoding, which is the same with the origi-

nal setting in BART [63]. The repetition penalty is used to penalize repetitive output,

introduced in Keskar et al. [81], with their recommended value used in this work.

Minimum Bayes risk decoding with candidate size 50 is used for accuracy evaluation,

which is commonly used in previous works and can reduce randomness in evaluation

[20, 68, 72, 82]. The model is trained with the AdamW [83] optimizer with a batch size

of 64, an initial learning rate of 1e-4, weight decay of 1e-2, and a cosine learning rate

schedule with 2000 warmup steps. The maximum epoch is 100 and the model with the

best validation loss is saved for evaluation. Moreover, condition noise injection with

σcond = 0.15 is used unless otherwise stated.

For Langevin dynamics, we set the strength of the guidance γ1 = 0.1, the strength

of preserving the original noisy text latent γ2 = 1e − 4, and the number of guidance

steps per diffusion iteration IM = 3, which are defined in Eq. 9. During the adaptation

of the alignment model, the Adam optimizer with a momentum of 0.9 and a learning

rate of 5e-5 is adopted, as in WavCaps [11]. The batch size is 64. The alignment model

is trained for 20 epochs. The size of the retrieval embedding is 1024.

For the audio-text alignment model, CLAP pretrained on WavCaps dataset (HTSAT-

BERT-ZS) [11] is employed, which is used both as the condition encoder for the de-

noiser and the basis for adapting the retrieval model in Langevin guidance. It uses

HTSAT [84] as the audio encoder and RoBERTa [85] as the text encoder. It excludes

any overlapped audio clips with the Clotho and AudioCaps datasets when training, and
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the dataset is weakly labeled, facilitated by ChatGPT [86]. It fits the zero-shot setting

well and is a standard alignment model used in many zero-shot audio captioning works

[24, 25, 27].

6.3. Results

6.3.1. Performance comparison with baseline and other related models

Table 5: Experiment results of the proposed method compared with other models on the Clotho dataset. The

abbreviations of the metrics are shown in Sec. 3.4. A “✓” in “ZS” column means the method is using the

same zero-shot setting as ours, while a “✗” means the method is fully supervised. The baseline model is a

direct adaptation of DACRLD [20] using condition swapping and noise injection with the same σcond = 0.15.
Model ZS B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

Zero-shot Diverse Audio Captioning Methods

ZS-DDAC (Ours) ✓ 0.113 0.333 0.145 0.253 0.173 1378 0.353 0.450 0.627

Baseline ✓ 0.076 0.285 0.126 0.156 0.115 2383 0.037 0.695 0.860

No Cond ✓ 0.043 0.259 0.097 0.051 0.046 2205 0.019 0.728 0.876

Diverse Audio Captioning Methods

C-GAN [17, 19] ✗ 0.119 - - 0.291 0.198 897 0.432 0.423 0.559

AC-VAE [22] ✗ 0.130 - - 0.345 0.230 899 0.442 0.417 0.574

DACRLD [20] ✗ 0.159 0.383 0.179 0.397 0.261 1492 0.349 0.417 0.616

Zero-shot Audio Captioning Methods

ZerAuCap [24] ✓ 0.029 0.254 0.094 0.140 0.097 - - - -

NoAudCap [26] † ✓ 0.113 0.347 0.156 0.292 0.197 - - - -

WSAC [25]† ✓ 0.126 0.359 0.169 0.357 0.238 - - - -

WSAC [25]* ✓ 0.147 0.372 0.174 0.396 0.262 377 0.872 0.249 0.298

SoftHard [27] ✓ 0.156 0.375 0.173 0.403 0.261 - - - -

SoftHard [27]* ✓ 0.157 0.376 0.173 0.407 0.264 758 0.830 0.300 0.351

Human - 0.321 0.510 0.306 0.901 0.566 3516 0.321 0.561 0.724

† We use the results reproduced in Zhang et al. [27] to ensure that the same WavCaps-pretrained

CLAP model [11] is used.
* Our reproduced results that have diversity evaluation.

We experiment with our full model that integrates condition swapping, condition

noise injection with σcond = 0.15, condition tiling, and the adapted retrieval-guided

Langevin guidance. The results on Clotho and AudioCaps are shown in Table 5 and

Table 6. The result of simply applying condition swapping (with condition noise

σcond = 0.15, the same as our full model) to the diffusion denoiser in DACRLD [20]

is added as a baseline. After this change the DACRLD [20] model becomes zero-shot.
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Table 6: Experiment results of the proposed method compared with other models on the AudioCaps dataset.

The abbreviations are the same with Table 5.
Model ZS B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

Zero-shot Diverse Audio Captioning Methods

ZS-DDAC (Ours) ✓ 0.212 0.436 0.219 0.531 0.343 955 0.330 0.469 0.623

Baseline ✓ 0.164 0.369 0.182 0.420 0.272 1234 0.117 0.626 0.765

No Cond ✓ 0.088 0.295 0.117 0.058 0.053 1219 0.042 0.722 0.829

Diverse Audio Captioning Methods

DACRLD [20] ✗ 0.280 0.498 0.256 0.757 0.472 1017 0.368 0.436 0.596

Zero-shot Audio Captioning Methods

ZerAuCap [24] ✓ 0.068 0.331 0.123 0.281 0.183 - - - -

NoAudCap [26]† ✓ 0.150 0.404 0.196 0.424 0.280 - - - -

WSAC [25]† ✓ 0.171 0.435 0.232 0.564 0.363 - - - -

WSAC [25]* ✓ 0.199 0.449 0.238 0.614 0.391 572 0.804 0.295 0.365

SoftHard [27] ✓ 0.213 0.457 0.220 0.644 0.400 - - - -

SoftHard [27]* ✓ 0.224 0.463 0.231 0.640 0.404 523 0.790 0.322 0.386

Human - 0.289 0.493 0.287 0.901 0.558 1681 0.289 0.542 0.699

† We use the results reproduced in Zhang et al. [27] to ensure that the same WavCaps-pretrained

CLAP model [11] is used.
* Our reproduced results that have diversity evaluation.

The result of not using any conditions is also added for reference (both the baseline

and unconditional models are detailed in Sec. 4). The comparison is performed within

zero-shot diverse audio captioning methods.

For reference, we also include work on diverse audio captioning and zero-shot au-

dio captioning. Note that current diverse audio captioning methods cannot be directly

used for comparison since they are fully supervised and use paired audio-text data for

training. In contrast, our method only uses text data from the training set, which is more

difficult. The zero-shot methods are deterministic, do not incorporate any mechanisms

or objectives to address diversity, and do not include diversity in their evaluations. For

a quantitative comparison, we reproduce some representative methods and add the di-

versity evaluation according to the method specified in other diverse audio captioning

works [17, 19, 20, 22]. Specifically, beam search with beam size 5 is used and the re-

sultant top 5 beam search results for each audio are used for diversity evaluation. This

is the approach used in earlier diverse audio captioning studies to compare their results

with ordinary non-diverse deterministic models [17, 19, 20, 22]. The performance

26



metrics of the zero-shot methods that do not include diversity come from [27], which

use the same CLAP model pretrained on WavCaps [11] to ensure fairness. We also

ensure this during our reproduction. For works on diverse audio captioning, we list

methods that do not leverage additional datasets for training. The human performance

is obtained in compliance with [17, 20, 22]. Concretely, for accuracy computation, one

of the five human annotations for each audio clip is treated as the predicted caption and

the other four as ground truths. The process repeats for the other four captions and the

average is reported.

As can be seen in Tables 5 and 6, our model achieves significantly higher diversity

than the other zero-shot audio captioning models and the diversity is close to that of

DACRLD [20] and human performance, indicating a high diversity level. The div-1

and div-2 metrics are even better than DACRLD [20] on both Clotho and AudioCaps.

Also, as shown in the tables, it significantly boosts the accuracy of the baseline model.

Adopting a diffusion-based structure is important for a better diversity, yet directly us-

ing it under a zero-shot setting (baseline) will lead to undesirable results that are overly

random and poor in relevance. Our model solves this problem and curbs the excessive

randomness, significantly improving its accuracy while still maintaining a high and

normal diversity level. The diversity of the baseline model is excessively high and can

result in unnatural captions. Its diversity is even much higher than human performance.

For example, its mBLEU4 (BLEU4 within captions generated for the same audio) on

Clotho is 0.037, as opposed to the 0.321 in human performance. Such behavior is

highly unnatural: while different listeners may have slightly different interpretations,

they are exposed to the same sound and should reach at least some basic consensus.

The qualitative results in Table 16 also show that the captions produced by the baseline

model are very random and cannot reliably capture the key semantics.

The results of not leveraging any conditions (No Cond) set a lower bound for the

accuracy metrics. Its diversity generally becomes even higher since no restrictions

are put on the contents of generation. This indicates a tradeoff between generation

relevance and diversity, which is also discovered in previous work on diverse audio

captioning [17, 18, 19]. Our model achieves better accuracy than the unconditional

model by a large margin, indicating effective condition utilization. In summary, our
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model could successfully generate captions with both significant accuracy and diversity

under the zero-shot settings. This demonstrates the effectiveness of our method.

6.3.2. Ablation studies on the proposed mechanisms

Table 7: Ablations on the Clotho dataset. The abbreviations of the metrics are shown in Sec. 3.4. “T” means

whether condition tiling is used. “L” means whether the adapted Langevin dynamics is used. If the module

is used, a “✓” appears in the corresponding cell.

T L B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

a. ✓ ✓ 0.113 0.333 0.145 0.253 0.173 1378 0.353 0.450 0.627

b. ✗ ✓ 0.099 0.316 0.138 0.218 0.153 1430 0.349 0.450 0.627

c. ✓ ✗ 0.108 0.325 0.142 0.227 0.159 2156 0.044 0.673 0.849

d. ✗ ✗ 0.076 0.285 0.126 0.156 0.115 2383 0.037 0.695 0.860

Table 8: Ablations on the AudioCaps dataset. The abbreviations are the same with Table 7.

T L B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

a. ✓ ✓ 0.212 0.436 0.219 0.531 0.343 955 0.330 0.469 0.623

b. ✗ ✓ 0.191 0.401 0.201 0.455 0.296 1026 0.334 0.470 0.619

c. ✓ ✗ 0.207 0.421 0.211 0.508 0.328 1346 0.102 0.641 0.779

d. ✗ ✗ 0.164 0.369 0.182 0.420 0.272 1234 0.117 0.626 0.765

Table 9: Effects of the adapted Langevin guidance when no condition is used for training and testing. The

abbreviations of the metrics are shown in Sec. 3.4. A “✓” in “L” means the guidance is used, while a “✗”

means it is not used.

L? B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

Results on Clotho

✓ 0.079 0.305 0.127 0.142 0.107 930 0.271 0.520 0.697

✗ 0.043 0.259 0.097 0.051 0.046 2205 0.019 0.728 0.876

Results on AudioCaps

✓ 0.140 0.357 0.153 0.179 0.137 633 0.257 0.511 0.662

✗ 0.088 0.295 0.117 0.058 0.053 1219 0.042 0.722 0.829

The ablation studies on the two proposed mechanisms, which are tiled conditioning

and audio-free adaptation of retrieval-guided Langevin dynamics, are shown in Table 7

and Table 8. “T” denotes whether to use tiled conditioning instead of the conventional
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Transformer with cross attention. “L” denotes whether to add the Langevin dynamics

module that uses the adapted alignment model.

Comparing Row c with Row d, we can see that condition tiling significantly im-

proves the relevance of generation. This indicates a better leverage of the conditioning

information under condition swapping and condition noise injection. Comparing Row

a with Row b, we conclude that condition tiling still works when the Langevin dynam-

ics is applied. These experiments demonstrate the effectiveness of tiled conditioning.

The adapted retrieval-guided Langevin dynamics module could enhance generation

relevance under various circumstances. Comparing Row b with Row d, or Row a with

c, we find that the accuracy increases when this module is applied. Also, comparing

metrics in Table 9, we find that it even works with the unconditional base model. The

diversity decreases, which is characteristic of this technique. By controlling the param-

eters of Langevin dynamics, it is possible to adjust the output of the model to be more

focused or more diverse [20]. This could be done at inference time without additional

training, since this technique is applied not at training time but at inference time. This

adds to the flexibility of this technique.

Table 10: Experiment results of adding the condition to only first m% length positions of the text latents on

the Clotho dataset. The condition tiling corresponds to m = 100. Langevin dynamics is not used in order to

better study the effects of condition tiling. The other settings are the same.

m% B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

100% 0.108 0.325 0.142 0.227 0.159 2156 0.044 0.673 0.849

70% 0.100 0.323 0.139 0.213 0.150 2228 0.038 0.688 0.855

50% 0.090 0.315 0.135 0.195 0.139 2239 0.036 0.690 0.857

30% 0.078 0.288 0.123 0.156 0.114 2307 0.037 0.707 0.863

We also performed additional experiments on adding the condition to only first m%

of the positions in the text latent. The result is shown in Table 10. From the results

we can find that the accuracy drops monotonically when m decreases. This correspond

to our discoveries since when m is lower, the model will gradually degenerate back to

under-utilizing the conditions. This supports the use of the condition tiling method.
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Table 11: Effects of condition tiling across different condition noise levels on the Clotho dataset. Langevin

guidance is not used. The abbreviations of the metrics are in Sec. 3.4. “T” denotes whether tiled conditioning

is used.

Cond T B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

σcond = 0 ✓ 0.051 0.261 0.114 0.135 0.098 2699 0.062 0.656 0.836

σcond = 0 ✗ 0.052 0.255 0.109 0.139 0.101 2513 0.116 0.611 0.798

σcond = 0.15 ✓ 0.108 0.325 0.142 0.227 0.159 2156 0.044 0.673 0.849

σcond = 0.15 ✗ 0.076 0.285 0.126 0.156 0.115 2383 0.037 0.695 0.860

σcond = 0.5 ✓ 0.055 0.268 0.104 0.066 0.056 2032 0.018 0.708 0.871

σcond = 0.5 ✗ 0.046 0.267 0.100 0.050 0.050 2244 0.021 0.724 0.875

Table 12: Effects of the adapted retrieval-guided Langevin dynamics across different condition noise levels

on the Clotho dataset. The baseline model without condition tiling is used. The abbreviations of the metrics

are in Sec. 3.4. “L” denotes whether the Langevin guidance is used.

Cond L B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

σcond = 0 ✓ 0.050 0.256 0.111 0.139 0.100 1838 0.342 0.475 0.653

σcond = 0 ✗ 0.052 0.255 0.109 0.139 0.101 2513 0.116 0.611 0.798

σcond = 0.15 ✓ 0.099 0.316 0.138 0.218 0.153 1430 0.349 0.450 0.627

σcond = 0.15 ✗ 0.076 0.285 0.126 0.156 0.115 2383 0.037 0.695 0.860

σcond = 0.5 ✓ 0.094 0.319 0.134 0.186 0.131 1226 0.223 0.518 0.716

σcond = 0.5 ✗ 0.046 0.267 0.100 0.050 0.050 2244 0.021 0.724 0.875

6.3.3. Effects of condition noise on the proposed mechanisms

The results of applying condition tiling and the adapted Langevin dynamics un-

der various condition noise σcond are shown in Table 11 and Table 12. In Table 11,

we compare condition tiling with conventional cross attention. We find that applying

condition tiling without condition noise injection could not bring significant improve-

ments. Since there is no condition noise, the dominant problem is the modality gap

instead of the noise-induced condition degradation, which might not be effectively re-

duced using condition tiling. This method works under noise standard deviation σcond

of 0.15 and 0.5, with the latter having less effect. This is natural since high noise levels

may still hamper the leverage of conditions. For the adapted Langevin dynamics, the

effect is also insignificant when there is no condition noise, which means the modal-
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ity gap problem may lead to denoiser outputs that are hard to be corrected through

the guidance mechanism. It brings significant improvements under both noise stan-

dard deviation σcond of 0.15 and 0.5, which demonstrates its ability to boost generation

relevance under various situations.

6.3.4. Effects of the audio-free adaptation of the alignment model

Table 13: Retrieval performance of the audio-text alignment model before and after audio-free adaptation.

The “BART Input” is the desired setting. “New after aud-free adapt” means the new model after the audio-

free adaptation.

Model
Caption to Audio Audio to Caption

R1 (↑) R5 (↑) R10 (↑) MedR (↓) MeanR (↓) R1 (↑) R5 (↑) R10 (↑) MedR (↓) MeanR (↓)

Results on Clotho

New after aud-free adapt (BART Input) 14.64 37.63 50.30 10 42.27 20.77 42.11 54.64 8 34.57

Raw model (BART Input) 0.10 0.40 0.84 533 530.09 0.00 0.19 0.96 815 1050.80

Raw model (Text Input) 16.50 39.08 51.23 10 44.14 20.00 44.02 56.84 8 33.51

Results on AudioCaps

New after aud-free adapt (BART Input) 29.40 62.38 76.34 3 12.26 39.60 69.80 83.07 2 10.08

Raw model (BART Input) 0.10 0.50 1.15 460 467.19 0.00 0.52 0.73 679 928.86

Raw model (Text Input) 28.36 61.13 75.61 3 13.67 40.65 69.07 80.15 2 12.22

To further investigate the effects of the audio-free adaptation of the alignment

model, we compare the retrieval performance of the alignment model before and af-

ter the adaptation on the test split of Clotho and AudioCaps. The results are listed

in Table 13. Here, for caption to audio retrieval, Rn measures the probability of the

correct audio appearing among the first n entries of the sorted search results. MedR is

the median rank of the correct audio in the search results, while MeanR is the mean

rank of the correct audio. The definitions are similar for audio to caption retrieval. The

results show that the performance after the adaptation on the desired BART latents is

comparable to that before the adaptation on the text tokens. This indicates the effective-

ness of the audio-free adaptation method. Note that no audio is used in the adaptation,

and the model goes through large changes since its input is entirely changed. In this

context, achieving performance close to the original model is already a strong result,

since no paired audio-text data are available for adaptation and thus there is no way
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to improve the audio–text correspondence beyond the pretrained model’s knowledge.

To better understand the effectiveness of our adaptation, we also performed experi-

ments on stripping the input embedding layer of the original model and sending it the

BART latents directly without adaptation. The results indicate that the model prior to

adaptation is almost entirely ineffective, and the adaptation substantially enhances its

performance.

6.3.5. Cross-domain experiments

Table 14: Results for cross-domain experiments that train the model with text data from various sources and

evaluate on AudioCaps test split. “*” indicates our reproduced results.

Model Source Dataset Size B4 (↑) RL (↑) MET (↑) Cr (↑) Sr (↑) Voc (↑) mB4 (↓) div-1 (↑) div-2 (↑)

Ours AudioCaps[33] 50k 0.212 0.436 0.219 0.531 0.343 955 0.330 0.469 0.623

Ours WavCaps[11] 400k 0.091 0.358 0.172 0.386 0.250 2395 0.228 0.506 0.706

SoftHard[27]* WavCaps[11] 400k 0.099 0.318 0.143 0.331 0.208 357 0.955 0.248 0.219

Ours AudioSetCaps[40] 100k 0.204 0.432 0.212 0.528 0.339 1249 0.311 0.492 0.639

Ours AudioSetCaps[40] 300k 0.168 0.408 0.197 0.447 0.293 1388 0.311 0.503 0.648

Ours AudioSetCaps[40] 500k 0.175 0.426 0.208 0.507 0.329 1366 0.310 0.517 0.657

SoftHard[27]* AudioSetCaps[40] 500k 0.032 0.259 0.160 0.069 0.093 854 0.994 0.180 0.196

We conducted additional experiments in a cross-domain setting, and the results

are shown in Table 14. Specifically, we trained our model on text-only data from

weakly-labeled large-scale datasets and evaluated on the standard test split of Audio-

Caps. To examine the effect of dataset size, we used three sample sizes of the Au-

dioSetCaps dataset [40], where each smaller subset is contained within the larger one.

It can be seen that our model has better generalization performance from WavCaps or

AudioSetCaps to AudioCaps compared with the previous zero-shot method SoftHard

[27], demonstrating the generalizability of our method. We can also find that training

on these weakly-labeled datasets, although larger, may not perform as well as on the

smaller target dataset. This is expected and also found in other works [27]. Since these

weakly-labeled datasets are noisy and have different domain characteristics from the

dataset to be tested, performance could decrease. For example, the captions in Au-

dioSetCaps could be more verbose and subjective, while captions in AudioCaps are

more concise and objective. Increasing the dataset size could provide more language
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knowledge to the model, but can also make the model easier to overfit to the domain

mismatch, limiting the effectiveness of using a larger data size.

6.3.6. Human evaluation

We conduct human evaluation to assess the diversity and relevance of the generated

captions, and the results are shown in Table 15. Specifically, we randomly select 10

audio clips from the Clotho test set and evaluate six candidate models. For each model,

we first take the first audio clip and generate five captions for it, forming one output

group. We repeat this process for all 10 audio clips, resulting in 10 output groups per

model. In total, this yields 60 output groups (10 audio clips × 6 models). Each output

group consists of five captions generated by the same model under the same audio

condition. For every output group, we design one survey question that asks human

participants to rate: 1) Diversity: how varied the five captions are, on a 1–5 scale (1 =

very low diversity, 5 = very high diversity); 2) Relevance: how well the five captions

correspond to a plausible description of the same audio, also on a 1–5 scale (1 = very

low relevance, 5 = very high relevance). We asked ten raters to independently assess all

60 output groups. To avoid bias, all outputs were randomly shuffled across models. The

final scores for each model are computed by averaging the ratings across all raters and

audio clips, and we report both the mean and standard deviation of these aggregated

results. The results are as follows.

Table 15: Results of human assessments on diversity and relevance, with 1 being the lowest and 5 being the

highest. The samples come from the Clotho test set. The reported values are mean ± std. “*” indicates we

reproduce these models.

Method Diversity Relevance Method Diversity Relevance

Ours 3.56 ± 0.71 4.04 ± 0.88 SoftHard [27]* 1.46 ± 0.75 3.98 ± 1.17

Baseline 4.10 ± 1.16 1.33 ± 0.55 WSAC [25]* 1.56 ± 0.88 4.11 ± 0.90

Human 3.52 ± 0.77 4.29 ± 1.00 DACRLD [20]* 2.78 ± 0.87 3.81 ± 1.02

For reference, we also list Clotho’s ground truth captions as one of the candidates

(called “Human” in the table). The results indicate that our method can successfully

achieve a much higher diversity compared with other zero-shot methods, while main-

taining a high level of relevance that is close to these zero-shot methods. In addition,
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the diversity level of our model is closer to human performance. These are in line with

the other experiments. We can see that human annotated captions have the highest

relevance. The diversity of the baseline model is much higher than that of human pro-

duced captions, indicating excessive randomness, and its relevance is very low. Our

model has a high level of diversity that is closer to the human level, and its relevance

is comparable to that of the other zero-shot audio captioning methods. The previous

zero-shot methods have very low diversity. We found that, since the captions produced

by previous zero-shot methods have low diversity, if one of their predicted captions is

incorrect, the other four also tend to be incorrect. However, our model is not restricted

by this. Also, captions that contain repetitive words or words that lack letters may re-

sult in lower standardized accuracy metrics, but humans are less affected by this when

assessing relevance. In summary, the human assessments are consistent with the other

experiments, showing that our model can achieve a good balance between generation

relevance and diversity.

6.3.7. Qualitative results

Finally, we present qualitative results on the generated captions of our model. The

results are shown in Table 16, which compares the captions generated by the base-

line model and our proposed model. The results show that our method can correctly

understand various objects, scenes and events in the audio clips and provide varied de-

scriptions of them. For instance, for the engine whirring sound, our model will not only

provide a low-level description (a loud whirring followed by a clunk), but also imagine

sounding objects with different specificity (machine or washing machine). The abil-

ity to provide multiple captions from different angles and different possible scenarios

reduces the chances of misunderstanding. Also, we can see that human annotators

provide different imaginations of the scene with different specificity (electric clippers,

pumps, or machine). This illustrates the inherent diversity in human-provided captions.

The model can also understand the key events in the gasping audio and the overall

scene in the wind roaring audio. In contrast, the baseline model tends to generate with

less relevance and more randomness. It cannot consistently capture the key semantics

in many samples, and may contain meaningless or abrupt expressions. In summary,
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Table 16: Qualitative results of our zero-shot diverse audio captioning method. “GT” denotes ground-truth

captions. The audio clips come from the testing split of Clotho.

Method Santa Motor.wav Various gasps.wav Sound of the wind comes

from the tunnel 3.wav

Ours

• a loud whirring followed by

a clunk

• a machine is running contin-

uously with constant speed

• a washing machine is run-

ning with a clicking noise

• a man is coughing and then

breathes in heavily

• a man sighs and pauses and

breathes heavily

• a person coughs softly and

breathes deeply and then

suddenly continues again

• a blowing wind with a high

pitched sound

• the wind howls loudly as

wind blows in the back-

ground

• the wind is whistling in the

distance as wind blows in

the background

Baseline

• a musical instrument plays a

keyboard instrument to play

repeatedly

• a machine hums and a ma-

chine vibrates constantly as

the time

• a radio crossing or station is

not a signal of a person

• charpet is being played in

the piano and pitch steadily

as notes get higher and

higher in pitch

• the whistling of a horn

sound gets louder as time

goes on

• a keys is blown lightly by

the note of a person to

change the repetitive sounds

• a person is playing a pretty

same violin for a song

• a subway alarm goes off as

it comes it comes into the

station

• a musical instrument is be-

ing played on a windylo-

phone

GT

• a machine whines and

squeals while rhythmically

punching or stamping

• a person is using electric

clippers to trim bushes

• someone is trimming the

bushes with electric clippers

• the whirring of a pump fills

a bladder that turns a switch

to reset everything

• while rhythmically punch-

ing or stamping a machine

whines and squeals

• a man is inhaling air with a

short gasp and exhaling

• a person breathing heavily

and deeply while groaning

• a person breathing heavily

at a constant pace in the

foreground

• a person is trying to get air

by gasping

• a person is having diffi-

culty breathing over and

over again

• a laboratory hums with elec-

tricity late at night

• a laboratory hums with elec-

tricity late into the night

• the wind is howling through

a large room

• through a large room the

wind howls wild

• humming of a large airliner

while seated near the wing
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our method can successfully generate captions with improved accuracy and diversity,

which consistently outperforms the baseline model.

7. Conclusion

In this paper, we have presented a diffusion-based audio captioning model that

possesses both diverse generation and zero-shot capabilities. We discover the noise-

induced condition degradation problem in diffusion-based captioners, which interacts

with the modality gap problem and poses challenges to the model under zero-shot

settings. We have proposed a condition tiling strategy to accompany condition noise

injection, which mitigates condition degradation and reduces overfitting to the modality

gap. To further enhance the relevance of generation, we have proposed an audio-free

adaptation method of audio-text alignment models, which allows the application of

retrieval-guided Langevin dynamics under zero-shot settings. Extensive experiments

on two official benchmark datasets, Clotho and AudioCaps, prove the effectiveness of

our method.
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